Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123166, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37481841

ABSTRACT

In this study, a highly fluorescent and receptor-free phenothiazine derivative (PDAB) was developed to detect picric acid. A combination of steady-state and time-resolved fluorescence studies was conducted to examine the excited state behavior of PDAB with picric acid in solution. The PDAB probe displayed a significant degree of selectivity and was highly sensitive to picric acid, with an extremely low detection limit of 9.82 nM. Time-resolved fluorescence quenching studies exhibit direct evidence of an inner filter effect-based sensing mechanism. Using the Parker equation, a thorough analysis was done to correct the inner filter effect on the sensing of picric acid. Overall, these studies provide critical information on the sensing mechanism for picric acid detection.

2.
Analyst ; 148(1): 137-145, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36468752

ABSTRACT

In this work, we have meticulously tuned the carcinogenic Congo red dye to environmentally benign fluorescent carbon dots (CDs) by adopting a typical hydrothermal method without any additives. The as-synthesized CDs were extremely water soluble, exhibited an excitation wavelength independent emission with a high fluorescence quantum yield (46%) and were biocompatible. The microscopy results revealed that the CDs were quasi-spherical with a particle diameter of ∼5 nm. The structure and functional groups of the CDs were comprehensively investigated using Fourier-transform infrared, X-ray photoelectron and Raman spectroscopy analyses. These studies show that the CDs were intrinsically functionalized with -OH, N-H and CO groups. In the sensing experiments, the CDs selectively responded to Fe3+ ions over other analytes with a detection limit of 12 nM. The time-resolved fluorescence quenching measurements were used to decipher the sensing mechanism. For the onsite 'equipment-free' detection of iron, we have developed a CD adsorbed paper-based analytical tool. Furthermore, the selective nature of CDs was highly beneficial for detecting Fe3+ in non-heme metalloprotein (ferritin) and real water samples. Thus, the CDs produced from the Congo red dye could be a prospective asset to the bio-imaging and biosensing research fields.


Subject(s)
Ferritins , Quantum Dots , Congo Red , Quantum Dots/chemistry , Carbon/chemistry , Prospective Studies , Fluorescent Dyes/chemistry , Water/chemistry , Spectrometry, Fluorescence
3.
Food Funct ; 12(11): 5038-5050, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33960359

ABSTRACT

Rheumatoid Arthritis (RA) is an autoimmune disease that commences as inflammation and progressively destroys the articular joint. In this study, we assess the anti-rheumatic potential of the monoterpenoid class of thymol conjugated with Carbon Dots (CDs). Waste biomass in the form of dried rose petals was chosen as a precursor for the synthesis of CDs via a one-step hydrothermal bottom-up methodology. The prepared CDs exhibited absorption in the near-visible region, and unique excitation-dependent emission behaviour was confirmed from UV-Visible and fluorescence measurements. The surface morphology of CDs was confirmed by SEM and HR-TEM analysis to be quasi-spherical particles with an average size of ∼5-6 nm. The presence of various functional moieties (hydroxyl, carbonyl, and amino) was confirmed via FT-IR measurement. The graphitization of CDs was confirmed by the D and G bands for sp2 and sp3 hybridization, respectively, through Raman analysis. Esterification methodology was adopted to prepare the CDs-thymol conjugate and confirmed via FT-IR analysis. CDs play the role of a nanocarrier for thymol, an anti-arthritic agent. The bioactive compound of thymol showed potent anti-arthritic activity against RA targets through in silico docking studies. Further, the in vivo studies revealed that CDs-thymol conjugates (10 mg per kg body weight) showed a significant reduction in rat paw volume along with reduced levels of RF and CRP (2.23 ± 0.42 IU ml-1 and 16.96 ± 0.22 mg ml-1) when compared to the disease control rats. X-ray radiography and ultrasonic imaging revealed less bone destruction, joint derangement, and swelling in arthritis-induced Wistar rats. They could also potentially improve the Hb (14.14 ± 0.19), RBC (6.01 ± 0.11), PCV (6.01 ± 0.11) levels and elevate the status of antioxidant enzymes (GPx, SOD, MDA), and the activity was comparable to the standard drug, ibuprofen (10 mg kg-1), suggesting that the CDs-thymol conjugate at 10 mg kg-1 could act as a strong anti-arthritic agent. This work is evidence for the utilization of waste biomass as a value-added product such as a nanocarrier for biomedical applications.


Subject(s)
Antirheumatic Agents/chemistry , Antirheumatic Agents/pharmacology , Carbon/chemistry , Quantum Dots , Thymol/chemistry , Animals , Antioxidants , Arthritis, Rheumatoid/drug therapy , Female , Interleukins/chemistry , Matrix Metalloproteinase 1/chemistry , Matrix Metalloproteinase 3/chemistry , Molecular Docking Simulation , Rats , Rats, Wistar , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Spectroscopy, Fourier Transform Infrared , Transforming Growth Factor beta/chemistry
4.
Analyst ; 145(13): 4532-4539, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32420579

ABSTRACT

This work addresses the synthetic optimization of carbon dots (CDs) and their application in sensing picric acid from latent fingerprints by exploiting a smartphone-based RGB tool. The optimization of the synthesis of CDs is investigated towards achieving shorter reaction time, better product yield and fluorescence quantum efficiency. Precursors such as citric acid and thiourea were chosen for the synthesis of CDs. Among the various synthetic methodologies, it is found that the pyrolysis method offers ∼50% product yield within 15 min. The morphology and optical properties of the prepared CDs are characterized using the typical microscopic and spectroscopic techniques, respectively. The synthesized CDs exhibit quasi-spherical shape with an average particle size of 1.7 nm. The excitation dependent emissive properties of CDs are investigated by time resolved fluorescence spectroscopy. Furthermore, the excellent fluorescence properties (φ = 11%) of CDs are explored as a fluorescent fingerprint powder for the identification of latent fingerprints on various substrates. In addition, the presence of picric acid in latent fingerprints was detected. Furthermore, this study is extended to perform real time detection of fingerprints and harmful contaminants in fingerprints by utilizing a smartphone-based RGB color analysis tool. Based on these investigations, the prepared CDs could be a prospective fluorescent material in the field of forensics.

5.
ACS Omega ; 5(12): 7025-7031, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258938

ABSTRACT

Recycling of waste into valuable products plays a significant role in sustainable development. Herein, we report the conversion of vehicle exhaust waste soot into water-soluble fluorescent carbon dots via a simple acid refluxion method. The obtained carbon dots were characterized using microscopic and spectroscopic techniques. Microscopic techniques reveal that the prepared carbon material is spherical in shape with an average particle size of ∼4 nm. Spectroscopic studies exhibited that the carbon dots are emissive in nature, and the emission is excitation-dependent. Further, the prepared carbon dots were successfully utilized as a fluorescent probe for the detection of tartrazine with a limit of detection of 26 nM. The sensitivity of carbon dots has also been realized by the detection of trace amounts of tartrazine in commercial soft drinks. Overall, this work demonstrates the conversion air pollutant soot into value-added fluorescent nanomaterials toward sensing applications.

6.
ACS Omega ; 3(8): 9096-9104, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459044

ABSTRACT

Herein, we report the preparation of graphene oxide dots (GO dots) by fine-tuning the carbonization degree of citric acid. The structure of GO dots was characterized by absorption spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, as well as high-resolution scanning electron microscopy and transmission electron microscopy analyses. The typical particle size of the GO dots was 42 nm. The fluorescent characteristics of the GO dots were analyzed by fluorescence spectroscopy. Once excited at 360 nm, the GO dots were fluorescent in the range of 450-550 nm, which was dependent on the excitation wavelength. Further, GO dots were effectively utilized for multifarious applications such as photoinduced electron transfer and detection of explosives and biomolecules. The emission property of GO dots was competently quenched by viologens, picric acid (PA), and bilirubin (BR). The mechanism of quenching by viologens and explosives/biomolecules was found to be due to photoinduced electron transfer and the internal filter effect, respectively. Intriguingly, the detection minimum of PA is in the nanomolar level. Toward commercialization, the economic test strips have also been introduced for the identification of PA. Furthermore, the GO dots have been applied as an efficient luminescent bioprobe for a selective and perceptive finding of BR.

SELECTION OF CITATIONS
SEARCH DETAIL
...